Geometrically constrained two-tensor model for crossing tracts in DWI.
نویسندگان
چکیده
MR diffusion tensor imaging (DTI) of the brain and spine provides a unique tool for both visualizing directionality and assessing intactness of white matter fiber tracts in vivo. At the spatial resolution of clinical MRI, much of primate white matter is composed of interdigitating fibers. Analyses based on an assumed single diffusion tensor per voxel yield important information about the average diffusion in the voxel but fail to reveal structure in the presence of crossing tracts. Until today, all clinical scans assume only one tensor, causing potential serious errors in tractography. Since high angular resolution imaging remains, so far, untenable for routine clinical use, a method is proposed whereby the single-tensor field is augmented with additional information gleaned from standard clinical DTI. The method effectively resolves two distinct tract directions within voxels, in which only two tracts are assumed to exist. The underlying constrained two-tensor model is fitted in two stages, utilizing the information present in the single-tensor fit. As a result, the necessary MRI time can be drastically reduced when compared with other approaches, enabling widespread clinical use. Upon evaluation in simulations and application to in vivo human brain DTI data, the method appears to be robust and practical and, if correctly applied, could elucidate tract directions at critical points of uncertainty.
منابع مشابه
Joint Fractional Segmentation and Multi-tensor Estimation in Diffusion MRI
In this paper we present a novel Bayesian approach for fractional segmentation of white matter tracts and simultaneous estimation of a multi-tensor diffusion model. Our model consists of several white matter tracts, each with a corresponding weight and tensor compartment in each voxel. By incorporating a prior that assumes the tensor fields inside each tract are spatially correlated, we are abl...
متن کاملResolving crossing fibres using constrained spherical deconvolution: validation using DWI phantom data
Introduction A number of acquisition and reconstruction techniques have recently been proposed to extract the orientations of the white matter fibres within each imaging voxel from diffusion-weighted imaging (DWI) data. Of these, the diffusion tensor model is currently the most commonly used, but is limited in that it cannot resolve crossing fibres [1]. Constrained spherical deconvolution (CSD)...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملFull tensor diffucion is not required to access the white-matter integrity in mouse contusion spinal cord injury
In vivo diffusion tensor imaging (DTI) derived indices have been demonstrated to quantify accurately whitematter injury after contusion spinal cord injury (SCI) in rodents. In general, a full diffusion tensor analysis requires the acquisition of diffusion-weighted images (DWI) along at least six independent directions of diffusion-sensitizing gradients. Thus, DTI measurements of the rodent cent...
متن کاملDual tensor for tract-based analysis: towards application to routine clinical diffusion images
Introduction FA values obtained from single tensor model fail to represent white matter integrity at the locations where white matter tracts cross. These values are usually underestimated with single tensor model used in conventional DTI. Currently a significant amount of diffusion imaging protocols used for fitting single tensor include acquisitions of diffusion weighted images (DWIs) of more ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2006